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ABSTRACT
We propose a selection scheme called Fitness-based Neigh-
bor Selection (FNS) for multimodal optimization. The FNS
is aimed for ill-scaled and locally multimodal domain, both
found in real-world numerical optimization problem.

In FNS, selection is applied to parent-child pair that most
likely belong to the same attractor. We determine such
pair with statistical comparison of the fitness values sampled
from region between the pairs, instead of conventional Eu-
clidean distance. In addition, the ranks of a parent among
sampled values are used to determine if the parent is re-
placeable. These measurements makes the algorithm scale-
invariant thus robust in ill-scaled domain.

Categories and subject discriptors: Computing Method-
ologies[Artificial Intelligence]:Problem Solving, Control Meth-
ods, Heuristic Methodsand Search

General Terms:Algorithm

Keywords:Genetic Algorithm, Multimodal Optimization,
Niching

1. INTRODUCTION
The general purpose of Multimodal optimization (MO) is

to obtain multiple optima/suboptima comprehensively or to
certain extent. MO can provide practical soultion in many
instances of real-world problems where preparing multiple
solutionswith varying feature is a better strategy. Many
researches have successfully applied modified selection pro-
cedure, also called Niching methods, to MO tasks [1, 4, 5,
2].
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Figure 1: Pop. Snapshot on Ill-scaled Attractors
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However, these conventional methods do not assume ill-
scaled domains, and commonly report difficulty in locally
multimodal domains. Ill-scaling and local multimodality are
commonly found in real-world problems, and present diffi-
culty for most optimization algorithm.

2. PROBLEM DOMAIN
We will refer to the convex around a suboptima as its

attractor. In Fig.1, P , Q are on one attractor and R is on
another.

In the ill-scaled domain, some variables are significanlty
sensitive to fitness function than others (See scaling in Fig.1),
or have strong correlations. This is problematic for methods
using Euclidean distance. In Fig.1, it is difficult to decide
parameters such as sharing distance[2] or minimum distance
to between ‘species’ [4, 1]. Generally, individuals on two at-
tractors are difficult to distinguish with Euclidean distance,
which can negate the Niching methods.

Locally multimodal domains have concentrated ‘clusters’
of suboptima. Reportedly, finding suboptima within a ‘clus-
ter’ is commonly difficult for Niching methods[4].

3. IMPLEMENTATION
We propose a selection scheme called Fitness-based Neigh-

bor Selection (FNS). FNS apply selection to parent-child
pair who are likely neighbors. However, instead of Euclidean
distance, the neighboring pair is determined by statistical
comparison of the sampled fitness values. Further, the ranks
of a parent’s fitness among the samples is used to measure
the parent’s replaceability. Above measurements are scale
invariant, giving FNS robustness in the ill-scaled domain.

3.1 Genetic Operators / Replacement Scheme
FNS uses ENDX[3] crossover, an extension of UNDX[6].

It defines normal probability distribution from the parents
to create offspring. It is successful in many benchmarks.

Following are the procedures for one cycle of replacement
scheme, which is a modification of Minimal Generation Gap
(MGG) [7]. Step 3 is detailed in Section 3.2.

1. Randomly select m parents from population P .
2. Generate λ offspring by iterated crossover.
3. Apply selection to best child and neighboring parent(s).

3.2 Fitness-based Neighbors
In Fig.1, P, Q are neighbors intuitively, while R are not,

as latter is on a different attractor. More mathematically,
we consider the mean fitness M over path PQ and QR.

MP Q =
R

P Q
f (x) dx/

R
P Q

dx (f(x) : FitnessFunction)

If MPQ is significantly better than MQR, the pair is more
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Figure 2: FNS and DC Snapshot on F1

likely to be on the same attractor than the other. Since
the integral of fitness function is usually uncalculable, it is
practical to compare sampled fitness values. We use fitness
values fPQ, sampled from normal distribution around the
path PQ. fPQ can be obtained by crossover of P, Q, and
recording fitness of the offspring. We compare mean fitness
f̄PQ and f̄QR using Wilcox’s Rank-sum Test.

FNS performs the above after each crossover on best child
c and two parents p0, p1. First, we crossover (p0, c) to sample
fitness values K0, then (p1, c) for K1. K0 À K1 denote K̄0 is
better than K̄1 with significance level α in Rank-Sum Test.
Tournament selection is applied to c and pi if Ki À Kj .

Further, we measure replaceability of parents pi by its
rank. Ri denote the rank of pi’s fitness among Ki. pi is not
subject to replacement if Ri is above threshold Rth. This
prohibits the replacement of parents on a third attractor.
The summary of crossover and FNS selection scheme:

1. Crossover p0, p1, ..., pm and select best offspring c.
2. Crossover p0, c, ..., pm to samples fitness values K0.
3. Crossover c, p1, ..., pm to sample fitness values K1.
4. If K0 ¿ K1 , apply tournament selection to (p1, c).
5. If K0 À K1 , apply tournament selection to (p0, c).
6. Otherwise, consider ranks R0, R1.

In step 6, elitist selection is applied to replaceable parent(s)
and c. pi is replaceable when Ri > Rth. The replacement
does not occur if neither parents are replaceable.

4. EXPERIMENTS
We compare Deterministic Crowding (DC) [5] and FNS

with two benchmarks with properties decribed in Section2.

4.1 Locally Multimodal Domain
Shubert Function is often used as locally-multimodal bench-

mark[4]. Within the range (−4 ≤ xi ≤ 8), it has over 100
suboptima distributed symmetrically. There are 2n pairs of
optima, each pair within a cluster of 4n suboptima. Fig.2
shows its contour by light lines.

FNS and DC are applied to 2-D F1, using population size
of 500 for 30,000 steps. The offspring size λ = 4. FNS
parameters are SampleSize=100, Rth = 0.5, and α = 0.1.

Fig.2 shows FNS and DC populations after 30,000 selec-
tion from a typical run with dark ‘+’. DC repeatedly re-
placed parents on suboptimal attractors when nearest off-
spring is created on nearby optimal attractors in the ‘clus-
ter’. As a result, final population occupy optimal attrac-
tors and few strong suboptimal attractors. Meanwhile, FNS
maintain population on suboptimal attractors, with consi-
tent analysis of the neighbors by sampled values and ranks.

4.2 Ill-scaled Domain
Next, we evaluate FNS in a non-linear, ill-scaled function

F2, derived from Rosenbrock’s function (1). F2 (2) has a
parabolic dominant attractor and a weaker attractor placed
parallel to each other. The optimal value of F2(~x) = 0 is
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Figure 3: Best fitness value on suboptimal attractor

found along the dominant ‘optimal’ attractor and at a point
(1,1) in weaker ‘suboptimal’ attractor.
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We assess FNS and DC’s ability to search a weak attractor
by tracking FR(y) for generation’s best individual y. FR(y)
is roughly the best fitness found in suboptimal attractor.

We run FNS and DC 10 times, each for 1,000,000 eval-
uations, using popsize 40 and offspring size λ=100. FNS
parameters are the same from previous experiment.

Fig.3 shows the convergence of FR(y) for 10 runs of DC
and FNS. DC runs show increase in fitness value, which in-
dicates that best individual in suboptimal attractor was re-
placed by one in the optimal attractor. In 8 out of 10 runs,
suboptimal attractor was completely abandoned. Mean-
while, FNS maintained steady improvement at varied con-
vergence speed depending on the number of individuals on
the suboptimal attractor. It reached the exact optima (1,1)
within the observed timeframe in two runs .

5. CONCLUSION
FNS have shown qualitative advantage in ill-scaled and

locally multimodal domain. This makes FNS practical for
real-world problems, and compensate for its apparent trade-
off of increased evaluation for sampling.

Like other Niching methods, FNS will show loss of conver-
gence speed in highly multimodal domain. Effective com-
bination of FNS with sophisticated reproductive selection
scheme is in the future works.
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